Optimization for Signal Processing and Communication

- **Statistical plus Dictionary Learning Approach for Speech Enhancement**
 - Speech Model: \(Y = S + W \)
 - Estimate the clean speech signal (S) from a given noisy speech (Y)
- **Proposed Approach**
 - Combine both statistical approach and dictionary learning approach
 - Statistical approach (classically): Use the statistical difference between speech and noise to do enhancement, such as Wiener, MAP, etc.
 - Dictionary learning approach (modern): Use the spectrogram structure difference between speech and noise to do enhancement

- **User Grouping in Modern Cellular Networks**
 - Fair utility function of the users
 - Congestion in the network
 - Schedule/Group the users in different time slots
 - Optimization problem with no binary/discrete variables
 - Numerical experiments:
 - Proportional fairness utility
 - 3GPP (TR 36.814) evaluation methodology
 - Throughput: 75% improvement
 - Cell edge users: 195% improvement

- **Simulation Results**
 - • Proposed Approach
 - • Maximum total DoF = \(\frac{K}{2} \)
 - • DoF of a user = \(\frac{1}{K} \)
 - • Introduced to maximize the total DoF (Maddahali, Jafar, Tse, …)
 - • Binary/discrete variables
 - • Time slots
 - • Approximation

- **Interference Alignment and Limitations**
 - Introduced to maximize the total DoF (Maddahali, Jafar, Tse, …)
 - DoF of a user = \(\frac{1}{K} \)
 - Maximum total DoF = \(\frac{K}{2} \)
 - Achievability through interference alignment
 - Distributed Algorithm
 - First stage: find a BS assignment by solving a max weighted matching problem
 - Second stage: find power by solving a power allocation problem
 - In distribution, and globally optimal if optimal min-rate > 1
 - Simulation results
 - The proposed algorithm achieves 50%-80% higher min-rate than other widely used algorithms

- **Optimal Joint BS Assignment and Power Allocation in a Cellular Network**
 - **Motivation**
 - Power allocation is easy to solve
 - How about joint BS assignment and power allocation?
 - **Model**
 - K BSs and K users, single antenna
 - Jointly optimize BS assignment and power allocation, to maximize min-rate, under constraints \(\text{SINR} > 1 \)
 - **Main Result**
 - The problem is polynomial time solvable.
 - **Simulation Results**
 - • Proposed Approach
 - • Maximum total DoF = \(\frac{K}{2} \)
 - • DoF of a user = \(\frac{1}{K} \)
 - • Introduced to maximize the total DoF (Maddahali, Jafar, Tse, …)
 - • Binary/discrete variables
 - • Time slots
 - • Approximation

- **Optimal Joint BS Assignment and Power Allocation in a Cellular Network**
 - **Motivation**
 - Traditional wireless network is migrating to the Heterogenous Network (HetNet)
 - In HetNet, Base Stations (BSs) are densely deployed
 - **Problem**
 - Jointly optimize the transceivers and user-BS assignment
 - **Model**
 - • Q BSs and N users in the network
 - • The users and BSs are all equipped with multiple antennas
 - • All users and BSs interfere with each other

- **Joint Linear Precoder Optimization and Base Station Assignment for MIMO Network**
 - **Approach**
 - We use a game theoretical approach
 - • The users and BSs are players of the game; they optimize some properly designed utility functions
 - • The resulting algorithm is distributed and efficient
 - **Simulation results**
 - • The proposed algorithm achieves greater throughput as well as higher fairness level, compared with algorithms that only consider transceiver design